How the Frack?
Recent events in the UK, Europe and the United States have
propelled hydraulic fracturing (‘fracking’) up the public and political agenda.
Amid the hullabaloo
down in Balcombe, you could easily miss the arguments advanced by each side. Is
the anti-fracking camp pitched on solid ground? Is the case for drilling full
of holes? In the first of two articles
on this topic I will examine how fracking works and what the risks are, while
the second will assess how much we need it.
Unconventional oil and gas exploitation uses what are now quite
conventional drilling methods, developed through the long history of the oil
and gas industry. These techniques use what are known as the ‘best available
technologies’, which are well understood from the perspectives of costs, risks and
safety. Well construction and design can and often does enable the safe
extraction of fossil fuels from deep below the ground.
No sense of wellbeing
However, the oil and gas industry does not inspire huge public
confidence, as attention focuses on major incidents like the Deepwater Horizon blowout,
which have cost lives, caused huge environmental damage, and bolstered the
arguments of green campaigners. Concerns about engineering methods and well
integrity are more serious than any number of dubious YouTube clips showing
people setting light to gas from their water taps.
Fracking is often carried out at considerable depth and involves
pumping high pressure water into the rock. Deep wells and high pressures place strain
on the engineered infrastructure and reduce the margins for error. However, at
Balcombe, initial drilling is less
than 1,500 metres. The average depth of a fracked well in the US is around
2,500 metres, while the Bowland
Shale in Lancashire is at a depth of some 4,750 metres. North Sea reserves
are typically 3-5km below the seabed, but all are shallow compared with Deepwater
Horizon, the deepest oil well in the world, extending more than 10,600 metres down
into the rock.
The Royal Society and Royal Academy of Engineers have
produced a
report on shale gas extraction, which highlights the need for good
construction and well integrity. However, sustaining these standards may be
challenging in a relatively new industry here in the UK, especially when there
are calls for deregulation and a need for short term returns on investments.
Water mess
Engineering challenges are not the only risk to account for
in an Environmental Impact Assessment – contamination, water impacts and even
radiation need to be considered. The evidence to quantify them may not yet be
available in all cases, but the absence of evidence is not evidence of absence,
especially in a developing industry.
The fracking process requires a huge amount of water, some 2-5
million gallons per well – although this estimate may be somewhat low due to
the way data is collected and the fact that some wells are fracked multiple
times. An MIT researcher has calculated
total water use for US wells in 2011 to be around 135 billion gallons, based on
a 5 million gallon average. This represents just 0.3% of US water consumption,
rather less than is used by golf courses.
This is a small percentage, but water stress is high on the
US agenda – it may become a focus in the UK, too, judging by most recent stress
maps. Fracking’s additional demands are not trivial: the industry’s impact on
aquifers in some Texan counties is starting to foment concerns amongst
previously pro-fracking populations.
The process of pumping large quantities of high pressure
water, sand and sundry drilling additives produces a lot of waste water, which
also contains toxic material brought up from the shales. Common toxins include
heavy metals (such as barium, strontium and arsenic) along with a number
hydrocarbons and bromides.
Evidence being amassed in the US shows that fracking
operations have polluted groundwater and released fluids and gas into drinking
water aquifers. As early as 1984, the US Environmental Protection Agency (EPA)
reported a case in West Virginia, which rendered an aquifer unusable. In 2011, the
EPA also reported extensive contamination of groundwater in Wyoming, and similar
events have been recorded in Canada. In each case, the causes have been
identified as faulty well installation, with seepage back into the ground from inadequately
engineered waste water storage. There are of course also reports of cases where
no contamination has taken place, which may serve as case studies of good
practice, but the evidence suggests a degree of inherent risk.
Ill treatment
A recent study by the University of Texas at Arlington found
elevated levels of arsenic and other heavy metals in groundwater near fracking
sites in Texas’ Barnett Shale. Whilst the study is not conclusive, elevated arsenic
levels have also been detected by the EPA
in domestic well water near a fracking site at Dimock, PA, necessitating
additional treatment systems to be installed by householders.
In Pennsylvania, state authorities have responded to EPA concerns
by requiring fracking waste water discharges to stop unless properly treated.
Some had been discharged to sewage works
that were incapable of dealing with the pollutants and therefore affecting
river quality. The UK might also struggle to treat substantial amounts of contaminated
wastewater so as to meet discharge standards, and could find itself in breach
of Water Framework Directive obligations.
Some US fracking wastewater is not treated: much is re-used
and then stored, whether temporarily pending treatment, or long-term in deep
wells. Above ground storage in open (and sometimes leaky) lagoons carries the
highest risk of land being contaminated, but underground storage also holds
risks.
Illegal discharges of polluted wastewater and reliance on
storage in the US may be connected with the country’s immense size, and the
distance water must be transported for treatment. In a country on the UK’s scale,
treatment sites will be closer, but some wells will still have significant storage
and transport needs. The lesson from the US appears to be that these will
require strict controls.
Gas radiator?
There are two sources of radionuclides from fracking: those deliberately
injected to trace and profile wells, and those occurring naturally in the shale
that are brought to the surface. Around a dozen short half-life isotopes are used
in controlled quantities for injection. Their use is of less concern than the
naturally occurring radionuclides, such as Radium, Radon, Thorium and Uranium, which
have a longer half-life. These materials require careful management to avoid environmental
and health impacts.
The EPA has detected higher than permitted levels of these
radionuclides in the outfall from wastewater treatment plant, and drilling
industry studies have found that dilution in rivers may not be effective,
meaning that radionuclides could enter drinking water inlets. Workers and local
residents at drilling sites and wastewater treatment plants are exposed to
health risks, most obviously cancers of the internal organs and the lungs, where
Radon escaping as a gas, has the opportunity to evaporate from storage or at
the well head.
Fluid situation
An extensive
range of additives may be injected with the sand and water during the drilling
and extraction processes in varying dilution and mixtures depending upon the
geology of the fracked well. Most are quite widely used in industry, as
operators are keen to point out, although they may have toxic characteristics: ammonium
persulfate, hydrochloric acid and mineral oil being examples.
These additives constitute around 1% of the fluid, a
significant quantity given the large amounts of water and sand being pumped. In
the US the makeup of fracking fluids can remain unknown under commercial
sensitivity laws, but UK rules include better disclosure on what chemicals are
being used, allowing them to be vetted for toxicity and other hazardous
properties.
Shaking shale
Fracking is thought to cause seismic activity, and
operations at the Cuadrilla site in the north west of England were suspended
after a minor earthquake hit
the news last year. A DECC report
co-authored with the British Geological Society concluded that “the risk from
these earthquakes is low” in terms of structural damage, but I would have concerns
about the risk posed to the integrity of the well lining itself.
A recent report in
the journal Science concluded that a large earthquake many miles away may trigger
a swarm of smaller earthquakes around a drilling site. The resulting
destabilisation of the fracked area can later lead to a larger earthquake. Fracking
wells might act like seismic lightning rods; but there’s no safe path to earth
for an earthquake and they could pose a more serious threat to habitations and
structures than previously thought.
None of the issues that I have raised is technically
insurmountable or fatal to the fracking cause if carefully managed, but each
risk needs to be controlled appropriately through regulation. The International
Energy Agency (IEA) has published a set of ‘golden rules’ for
fracking that include examples of best practice in policy and regulation, which
would be a good starting point for the UK. If we are to safely extract gas
instil confidence in the regulatory matrix as whole, regulation will need to be
backed by close monitoring.
These controls will be costly to establish and maintain –
the IEA estimates that implementing its rules would increase the costs of a
well by around
7% – which may harm the business case for unconventional oil and gas.
However, without such measures it is doubtful whether even residents of the desolate north will
be induced to welcome fracking, whatever its economic benefits.